Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Bioinform Online ; 12: 303-312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980385

RESUMO

Since the proposition of introns-early hypothesis, although many studies have shown that most eukaryotic ancestors possessed intron-rich genomes, evidence of intron existence in genomes of ancestral bacteria has still been absent. While not a single intron has been found in all protein-coding genes of current bacteria, analyses on bacterial genes horizontally transferred into eukaryotes at ancient time may provide evidence of intron existence in bacterial ancestors. In this study, a bacterial gene encoding capsule biosynthesis protein CapI was found in the genome of sea anemone, Nematostella vectensis. This horizontally transferred gene contains a phase 1 intron of 40 base pairs. The nucleotides of this intron have high sequence identity with those encoding amino acids in current bacterial CapI gene, indicating that the intron and the amino acid-coding nucleotides are originated from the same ancestor sequence. Moreover, 5'-splice site of this intron is located in a GT-poor region associated with a closely following AG-rich region, suggesting that deletion mutation at 5'-splice site has been employed to remove this intron and the intron-like amino acid-coding nucleotides in current bacterial CapI gene are derived from exonization. These data suggest that bacterial CapI gene contained intron(s) at ancient time. This is the first report providing the result of sequence analysis to suggest possible existence of spliceosomal introns in ancestral bacterial genes. The methodology employed in this study may be used to identify more such evidence that would aid in settlement of the dispute between introns-early and introns-late theories.

2.
Mol Genet Genomics ; 290(2): 633-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25403511

RESUMO

The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cães/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Sequência Conservada , Genoma , Sequências Hélice-Alça-Hélice/genética , Íntrons , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de DNA
3.
J Insect Sci ; 14: 195, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25434030

RESUMO

Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sequências Hélice-Alça-Hélice , Proteínas de Insetos/genética , Pediculus/genética , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Pediculus/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...